
Chapter 32 - STRUCTURE FACTORS FOR PARTICULATE SYSTEMS 

 

 

Scattering factors from nanostructures consisting primarily of particles (think spheres) in 

a background medium (think solvent) are described here in the case of non-dilute 

systems. The Ornstein-Zernike approach is a suitable way to describe inter-particle 

contributions.  

 

 

1. THE ORNSTEIN-ZERNIKE EQUATION 

 

The radial distribution function for a pair of scattering particles with no internal structure 

separated by a distance r is called g(r). It is the probability of finding a scatterer at radial 

distance r provided that there is a scatterer at the origin. g(r) is related to the inter-particle 

interaction potential U(r) as follows: 

 

  g(r) = exp[-U(r)/kBT] .    (1) 

 

Since the potential of mean-force U(r) contains contributions from many-body 

interactions, it is expanded in terms of binary (wij), ternary (wijk), and higher order 

interactions: 

 

 U(r) =  
k,j,i

ijk

j,i

ij ...)r(w)r(w     (2) 

 

Note that g(r) is zero for very short distances since two particles cannot occupy the same 

space and is equal to one for large distances since at far enough distance, a particle can be 

located for sure.  

 

Direct interactions between the pair of interacting particles are represented by the direct 

correlation function c(r) whereas interactions through other particles are represented by 

the total correlation function h(r) = g(r) -1.  

 
Figure 1: Direct and indirect inter-particle interactions. 
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The Ornstein-Zernike integral equation (Ornstein-Zernike, 1918; Hansen-McDonald, 

1986) is a relation between the direct correlation function c(r) and the total correlation 

function h(r).  

 

   )'r(h)'rr(c'rdN)r(c)r(h


.    (3) 

 

VNN   is the particle number density.  

 

In the Fourier variable space, this equation reads: 

 

 )Q(H )Q(C N)Q(C)Q(H  .    (4)  

 

The inter-particle structure factor is defined as: 

 

 
)Q(CN-1

1
H(Q) N1)Q(SI  .    (5) 

 

Note that the Ornstein-Zernike equation contains two unknowns (h(r) and c(r)). It can be 

solved only if another (so called "closure") relation is added. Many of these closure 

relations have been introduced (hypernetted chains, Born-Green, Percus-Yevick, Mean 

Spherical Approximation, etc). Using one such closure relation, numerical solutions of 

the Ornstein-Zernike equation yield realistic inter-particle structure factors. The last two 

closure relations (Percus-Yevick and Mean Spherical Approximation) are discussed here 

because they permit simple analytical solutions to the integral equation.  

 

Three inter-particle interaction potentials can be considered: hard sphere, screened 

Coulomb and square well. The hard sphere potential is used with the Percus-Yevick 

closure relation and the screened Coulomb potential is used with the Mean Spherical 

Approximation.  

 

 
 

Figure 2: Representation of the various inter-particle interaction potentials.   
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2. THE PERCUS-YEVICK APPROXIMATION 
 

The Percus-Yevick approximation (Percus-Yevick, 1958) uses the following closure 

relation in order to solve the Ornstein-Zernike integral equation: 
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Assume the following hard sphere interaction potential between particles: 

 

 0)r(w   for Dr       (7) 

 )r(w  for Dr  . 

 

Here D is the sphere diameter. Solution to the Ornstein-Zernike equation is analytical: 
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The following parameters have been defined: 
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 is the particle volume fraction ( 6DN 3 ), N  is the density of scattering particles 

and D is the "effective" particle diameter.  

 

The Fourier transform of the direct correlation function can be calculated as: 
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The structure factor for a liquid of structureless particles is given by: 
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Figure 3: Inter-particle structure factor SI(QR) vs QR prediction from the Percus-Yevick 

model (with hard sphere potential) for = 0.30. Note that the sphere radius is R = D/2. 

 

The scattering cross section involves the product of the form factor and the structure 

factor: 
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.     (12) 

 

Here 2 is the contrast factor,  is the volume fraction and VP is the particle volume 

( 3R4V 3

P  ). Note that in this simple “hard sphere” interaction potential model, the 

sphere diameter that enters in the form factor is taken to be the same as the hard sphere 

radius used in the structure factor.  
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Figure 4: Form factor P(Q) for isolated spheres (infinite dilution limit), and product  

P(Q)SI(Q) for a solution of spheres with a volume fraction of  = 0.30. The Percus-

Yevick model (hard sphere potential) has been used to model the inter-particle structure 

factor SI(Q).  

 

 

3. THE MEAN SPHERICAL APPROXIMATION 

 

When Coulomb interactions are present, another closure relation to the OZ equation is 

applied; the Mean Spherical Approximation (Hayter-Penfold, 1981). Consider a 

scattering system consisting of macroions (charged positive), counter ions (charged 

negative) and solvent. The Coulomb interaction potential is defined as: 
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The macroion surface interaction potential is given by: 
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The following parameters have been defined: 

 

 0: Permittivity of free vacuum 

 : Dielectric constant 

 D: Macroion diameter 

  : Debye-Huckel inverse screening length 

 zm: Macroion electric charge (number of electrons). 

 

The Debye-Huckel screening parameter (inverse length) squared is expressed as follows: 

 

Nz
Tk

e
m

B

2
2        (15)   

 

Here e is the electron charge, zme is the macroion charge, N  is the macroion number 

density (number per unit volume) and kBT is the sample temperature in absolute units.  

 

Dimensionless parameters are defined: 
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Along with the following contact potential (for r = 2D) a`s: 

 

   2

00kexp  .     (17) 

 

The Mean Spherical Approximation (MSA) closure relation to the Ornstein-Zernike 

equation is given by: 

 

 )r(U)r(c    for r > D    (18) 

 1)r(h    for r < D. 

 

Note that the limiting case for which 0  or k  yields the Percus-Yevick result.  

 

The MSA closure is used to solve for c(r): 
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The structure factor is obtained as: 
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With: 
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The macroion volume fraction 6DN 3  has been expressed in terms of the macroion 

number density N . The forward scattering limit is given by SI(0) = -1/A.  

 

Note that expressions for the constants A, B, C, and F are too lengthy to reproduce here. 

They can be found in the original publication (Hayter-Penfold, 1981). F is the solution of 

a 4th power polynomial equation.  
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Figure 5:  Variation of the structure factor SI(Q) obtained from the MSA for a spherical 

macroion diameter of D = 40 Å, macroion charge of zm = 20 electrons, a volume fraction 

of  = 0.01 and at T = 25 oC.  The dielectric constant  = 78 is for D2O at 25 oC.  

 

 

4. THE RANDOM PHASE APPROXIMATION 

 

Consider now particles with internal structure or polymers made out of spherical 

monomeric units. Note that spheres are assumed to fill the particles or replace the 

monomers in polymers. The Random Phase Approximation (RPA) provides another 

closure relation used to solve the OZ equation. The RPA assumes that 

Tk)r(w)r(c B . Note that within the RPA, different notation is used for interaction 

potentials. By convention, these are called w(r) for polymers and U(r) for particulate 

systems.  

 

The intra-particle contributions are included in the Ornstein-Zernike equation as follows 

(in Fourier space): 

 

 )Q(HN)Q(C)Q(S)Q(S)Q(C)Q(S)Q(H 000  .  (22) 

 

Along with the RPA closure relation: 
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This closure is reminiscent of the MSA closure relation for r > . Note the following 

relations for particles with internal structure (or polymers with spherical monomers): 
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It follows that: 
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This is the Random Phase Approximation result obtained for compressible polymer 

mixtures. The scattering cross section is given by: 
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Note that this approach can be extended to the multi-component case by changing the 

various structure factors to matrices.  

 

The scattering factor for polymer mixtures S(Q) and the structure factor for particulate 

systems SI(Q) are related by the relationship: 

 

 )Q(S)Q(PV)Q(S I111 .     (27) 

 

Here 1, V1 and P1(Q) are the volume fraction, polymer volume and form factor for 

polymer component 1. Recall that within the incompressible RPA, the structure factor 

SI(Q) is given by:  
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The scattering factor S(Q) is therefore proportional to 12 as it should. 

 



Note also that the mean field approximation does not model the local interactions 

properly for inter-particle inter-distances smaller than particle sizes since packing effects 

on thermodynamics and phase separation are neglected. For this reason, the g(r) obtained 

from such a mean field approach does not show realistic oscillations for the neighboring 

coordination shells. The appeal of this approach, however, is that it gives simple 

analytical results. 
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QUESTIONS 

 

1. Does a numerical solution to the Ornstein-Zernike integral equation (with a realistic 

closure relation) describe local packing adequately? How about a mean field analytical 

solution (using the mean spherical approximation)? 

2. Can the scattering cross section for a concentrated solution of particles (colloidal 

suspension for example) be described as the product of a single-particle and an inter-

particle structure factors? 

3. Name the closure relation that yields an analytical solution to the OZ integral equation 

in the case of hard sphere interaction potential.  

4. What approach gives the most realistic solution to the Ornstein-Zernike equation? 

5. What is the Mean Spherical Approximation (so called MSA)? What systems are well 

described by the MSA? 

6. Are the Random Phase Approximation (used to describe polymer systems) and the 

Ornstein-Zernike equation (used to describe particulate systems) related at all?  

 

 

ANSWERS 

 

1. A numerical solution to the Ornstein-Zernike integral equation along with a realistic 

closure relation describes local packing well. A mean field analytical solution is too 

simplistic and yields correct overall trends but incorrect local packing information.  



2. The scattering cross section for a concentrated solution of particles can be described as 

the product of a single-particle and an inter-particle structure factors provided that the 

particles are not elongated (i.e., are isotropic).  

3. The Percus-Yevick closure relation yields a simple analytical solution to the OZ 

integral equation for the hard sphere interaction potential.  

4. A numerical solution to the Ornstein-Zernike equation along with one of the closure 

relations gives more realistic results than highly approximated analytical solutions.  

5. The Mean Spherical Approximation (MSA) is a closure relation used to solve the 

Ornstein-Zernike equation. Charged systems are well described by the MSA since 

Coulomb interactions are included. The MSA yields analytical (albeit lengthy) results.  

6. The Random Phase Approximation (used to describe polymer systems) is a mean-field 

closure relation to the Ornstein-Zernike equation. The RPA closure is a simplified form 

of the MSA closure.  

 


